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Modelling the thermal decomposition of 3,4,5-trihydroxybenzoic acid using 
ordinary least square regression

Abstract

Thermalgravimetric analysis and differential thermal analysis were employed to study the 
thermal behavior of gallic acid using regression models. Data were subjected to ordinary least 
square regression models and results showed that thermal decomposition occurred in three main 
steps with two endothermic peaks and two exothermic peaks due to oxidation process. The 
dehydration started at 74°C in a single step until 107°C. After that, the anhydrous compound 
was stable until 210°C, when the decomposition of organic matter occurred in two consecutive 
steps. Regression models based on a first-order kinetic of gallic acid decomposition were 
proposed and equations were deemed statistically significant  (p<0.05) and explained suitably 
the phenomenon. Differential scanning calorimetry (DSC) allowed the determination of the 
enthalpy of the main events and the Flynn-Wall-Ozawa non-isothermal method was used to 
investigate the activation energy of decomposition process that was found to be 150.31 kJ.mol-1. 

Introduction

Several phenolic compounds are found in 
fruits and vegetables and have been described in 
the literature (Vita, 2005). They can exert various 
health-promoting functions such as: reducing the 
risk of different types of cancer, protecting against 
some non-transmissible degenerative diseases, and 
reducing the risks of heart diseases (Vita, 2005; Kaur 
and Kapoor, 2001). Other beneficial effects that 
have already been reported include neuroprotection 
(Mandel and Youdim, 2004), hypoglycemic and 
antihyperglycemic activities (Abeywickrama et 
al., 2011) as well as in vitro and in vivo antioxidant 
activity (Morais et al., 2009;  Macedo et al., 2013;  
Alezandro et al., 2013).  In the plant kingdom, gallic 
acid (3,4,5-trihydroxybenzoic acid) is a phenolic acid 
that can be found in several fruits, such as grapes, 
pomegranates, blackberries and in processed food 
and beverages as prunes, wines, juices, teas, etc. 
(Amakura et al., 2000; Bakkalbaşı et al., 2005; Dias 
et al., 2013; Zielinski et al., 2014). 

Based on the fact that temperature is one important 
factor that can ultimately affects the antioxidant 
activity of phenolic acids and thus its mechanism 
of action (Réblová, 2012), the information about 

stability and behavior of gallic acid subjected to 
thermal analysis would facilitate the understanding 
on how this phenolic compound would behave during 
a food processing, for example. In a preliminary 
study, this work aims to investigate the thermal 
behavior of gallic acid and its decomposition kinetics 
using the following thermoanalytical techniques: 
thermogravimetry (TG), differential thermal analysis 
(DTA), differential scanning calorimetry (DSC) as 
well as X-ray diffractometry (XRD) and infrared 
spectroscopy (FT-IR).

Material and Methods

Reagent
Gallic acid monohydrate (≥99%, HPLC grade; 

Sigma-Aldrich) was kept in a desiccator containing 
anhydrous calcium chloride until constant mass and 
then analyzed.

Thermonalytical behaviour of gallic acid
The simultaneous TG-DTA was performed on a 

SDT 2960 (TA-Instr., USA) calibrated according to 
the manufacturer’s recommendation. Under synthetic 
air flow of 100 mL.min-1; mass around 5 mg of the 
gallic acid, heating from 30 to 600°C at a heating rate 
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of 10°C min-1 in an open alumina crucible. 
The DSC curves were obtained using a DSC-Q200 

(TA-Instr. Co., USA) calibrated according to the 
manufacturer’s recommendation. Approximately 5 
mg of the gallic acid were placed in an aluminum 
crucible with perforated cover and then heated from 
30 to 300°C at a rate of 10°C min-1. The analysis 
was performed under air flow of 100 mL.min-1. The 
Universal Analysis software was used to determine 
all percentages of mass losses (TG-DTA) and the 
main endo or exothermic peaks and enthalpy values 
(DSC).

The non-isothermal kinetic study was performed 
on thermal analysis system TGA-50 (Shimadzu, 
Japan) calibrated according to the manufacturer’s 
recommendation. Using the Flynn-Wall-Ozawa 
method (Flynn, 1966; Ozawa, 1965) where samples 
(5 mg) were heated from 25 to 400°C at heating rates 
of 10, 15, 20, and 25°C min-1 under air atmosphere 
with a flow of 150 mL.min-1. All the instruments 
were calibrated prior to the analysis. Experimental 
data were fit using a linear approximation based on 
the integral calculus from the Arrhenius equation 
(first-order kinetics). Prior to the regression analysis, 
normality was formally checked by the Anderson-
Darling test and Box-Cox transformation was applied 
when data did not follow the normal distribution. 
Then, results were adjusted to a first-order model by 
Equation 1:

C = C0ekt                                          (Equation 1)

Where C the mass in a certain point of the 
analysis and C0 represent the initial mass and k is 
a rate constant. Then, regression analysis based on 
the ordinary least square method was performed 
aiming to characterize the degradation of gallic acid 
at different heating rates. The regression terms were 
calculated and their significance was assessed by 
analysis of variances taking on a probability level of 
5%. In order to assess the statistical quality of the 
proposed model, also known as goodness-of-fitting, 
the determination coefficient (R2), adjusted R2, the 
probability value (p-value) of the regression and the 
correlation coefficient (r-value) were also calculated 
(Granato et al., 2014). Prediction intervals for all 
regression models were calculated as considering 
a normal distribution of data with means (µ) and 
standard deviation (    ).

Results and Discussion

Figure 1 shows the thermal behavior of gallic acid 
(TG-DTA and DSC) from 25°C (room temperature) 

up to 600°C. As it can be observed, the compound 
is stable up to 74°C when occurs the first mass 
loss (9.1%) up to 107°C due to hydration water 
(endothermic peak at 92°C) that correspond to one 
mol. Above this temperature until 210°C gallic acid 
is stable with no mass loss and no endo or exothermal 
events. The second mass loss (78.8%) occurs between 
210-264°C with an endothermic peak (256°C) 
observed in the DTA curve. Imediatelly occurs the 
third mass loss (10.5%) with the oxidation of the 
organic matter and two corresponding exothermic 
peaks (at 410 and 431°C), respectively. The final 
residue of decomposition of gallic acid was 1.6% of 
the total initial mass (carbon residue). All the thermal 
decomposition steps (25, 150, 250 and 300°C) were 
evaluated by FTIR and X-Ray Diffraction Powder 
Patterns (XRD).

The dehydration water peak occurs as an 
endothermic phenomenon with the onset, conclusion, 
peak temperatures as well as enthalpy, respectively To 
= 67°C, Tp = 97.5°C, Tc = 116°C and ∆H = 265J g-1. 
In the same way, the values for the second peak were 
To = 252°C, Tp = 265°C and Tc = 295°C, respectively. 
The melting enthalpy was not calculated because the 
melting point occurs together the second mass loss.

The FTIR spectra with KBr pellets of gallic acid 
at the temperatures of 25, 150, 250 and 300°C were 
realized and the main bands can be observed,  25°C 
the    (-OH) at 3,770 and    (C=O) at 1,720 cm-1were 
assigned to the monohydrate compound. At 150°C 
all the main bands of gallic acid were characteristic 
with some slight shift in the peak positions due to the 
anhydrous compound due the decrease of hydrogen 
bonds with water after dehydration. At temperatures 
above 300°C was observed decrease in the main 
absorption peaks indicating that the final product 
is carbon. These results are in agreement with the 
literature (Rao and Reddy, 1981).

In the same way the X-ray Powder Patterns 
Diffractometry, show what the main diffraction peaks 
are: (a) at 25°C, 2   = 8.2, 16.2, 19.0, 25.4, 27.8 and 
32.6; the intensity 1439, 4267, 1335, 352, 352, 425 
cps, respectively; (b) at 150°C, 2 = 14.3, 16.4, 23.2, 
25.4, 27.6, the intensity 342, 970, 256, 1380, and 
1008 cps, respectively; (c) at 250°C, 2 = 14.5, 15.6, 
16.4, 23.4, 25.3, 27.6 and 32.0 the intensity 338, 313, 
1080, 304, 1472, 1139 and 235 cps, respectively; (d) 
at 300°C, 2 = 14.5, 15.5, 16.8, 25.1, 26.9 and 27.6 
the intensity 213, 532, 409, 721, 594 and 509 cps, 
respectively. The XRD results are in agreement with 
those found in the literature (Bhagat et al., 2015; Liu 
et al., 2014). After dehydration crystallinity of Gallic 
acid practically no changes (Figure 3 a-c). After 
heating at 350°C and cooling occurs recrystallization 



 Alberti et al./IFRJ 23(1): 30-33 32

of the compound, small displacement  in XRD 
peaks (Figure 3 d) suggest that the compound is 
recrystallized from a different crystalline form of the 
initial.

The data obtained from thermogravimetric 
analyses under four heating rates were used to propose 
first-order mathematical models of decomposition 
kinetics of gallic acid and the curves are depicted in 
Figure 2.

The multiple regression analysis showed that the 
decomposition models for heating rates of 10, 15 
and 20°C min-1 were highly significant (p<0.00001) 
and they were able to explain more than 90% of all 
variance in experimental raw data. Thus, the regression 

equations that described the decomposition of gallic 
acid for heating rates of 10 and 15°C.min-1 can be used 
to explain adequaly the phenomenon. Conversely, the 
mathematical model obtained at 25°C min-1 explained 
only 55% of the data and thus should not be used to 
predict the kinetics of decomposition. In Table 1 are 
gathered these obtained results and Figure 3 shows 
the trend for gallic acid decomposition at different 
heating rates.

Thermogravimetric analysis under different 
heating rates can be used to determination of 
Arrhenius parameters as reported in literature 
(Vyazovkin et al., 2014). This decomposition of 
gallic acid followed first-order reaction (n= 1), and 
the activation energy (Ea) was found to be 150.31 
kJ.mol-1, when the Arrehnius frequency factor was 
1.712 x 107 min-1.

Conclusion

Thermal analysis (TG-DTA and DSC) was 
proved to be suitable techniques for evaluating 
the thermal behavior of gallic acid and allowed to 
calculate dehydration and fusion enthalpies. The 
decomposition models proposed could explain more 
than 90% of all variance in data and regression 

Table 1. Statistical parameters of the kinetic values obtained from thermal decomposition of gallic acid

Figure 1. Simultaneous TG-DTA curves (left) and DSC 
curve (right) of gallic acid

Figure 2. TG curves on kinetic values in the thermal 
decomposition of gallic acid at heating rates of 10, 15, 20 
and 25°C min-1

Figure 3. Regression equation of gallic acid decomposition 
at 10oC/min (A), 15oC/min (B), 20oC/min (C), and 25oC/
min (D)
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equations were statistically significant. The non-
isothermal interconversion kinetic method describes 
the complexity of the decomposition process and 
allowed to obtain the kinetic (Ea) parameters of gallic 
acid decomposition. 
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